Comune di TORINO

Provincia di TORINO

RELAZIONE TECNICA

Calcolo del flusso e della trasmittanza lineica di ponti termici Verifica rischio formazione muffe

OGGETTO: Ristrutturazione villetta a due piani.

Rifacimento sottotetto Valutazione ponti termici

PROGETTISTA: Ing. Carla Verdi

PARTE D'OPERA:

COMMITTENTE: Restructura SpA

Torino, lì 27 novembre 2019

Progettista

RELAZIONE TECNICA

Calcolo numerico dell'energia trasmessa attraverso le strutture edilizie interessate da ponti termici e verifica del rischio di formazione delle muffe.

La valutazione deriva da una simulazione numerica agli elementi finiti; in questo modo vengono calcolati ed elencati i flussi termici su ogni elemento e il flusso termico totale, le temperature interne e le temperature superficiali, le trasmittanze termiche dei singoli elementi, il coefficiente di accoppiamento termico e la trasmittanza termica lineica del ponte termico.

Per la valutazione del rischio di formazione delle muffe viene evidenziata la minima temperatura superficiale sulla faccia interna, la temperatura critica, il fattore di temperatura critico f_{RSi,max} e il mese critico.

Alla fine del calcolo viene evidenziato se il ponte termico è corretto e se il ponte termico è soggetto o no al rischio di formazione delle muffe.

Metodologia di calcolo

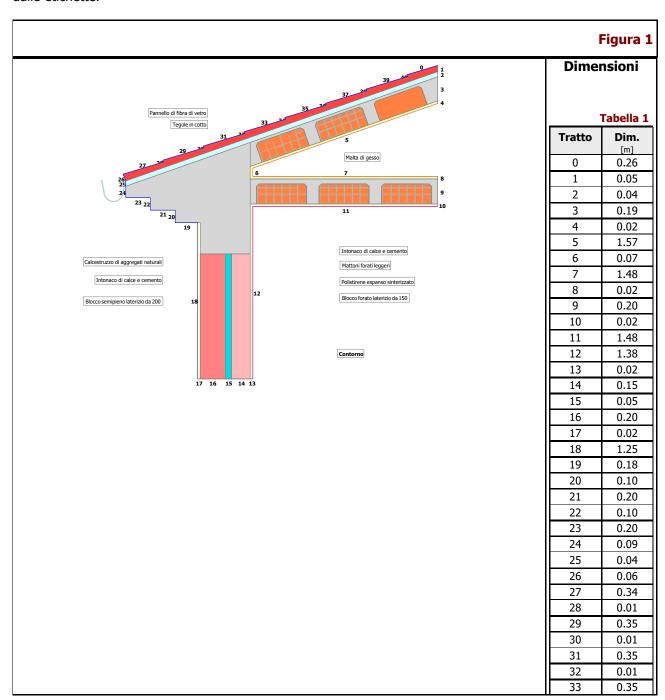
Il metodo di calcolo agli elementi finiti, secondo quanto previsto dalla norma **UNI EN ISO 10211**, permette di ricavare le trasmittanze termiche lineari e le temperature superficiali.

Si basa sui sequenti presupposti:

- tutte le proprietà fisiche sono indipendenti dalla temperatura;
- non ci sono sorgenti di calore all'interno dell'elemento edilizio.

Il metodo numerico utilizzato è validato secondo quanto previsto dall'Appendice A della norma stessa, in quanto:

- a) fornisce le temperature e i flussi termici;
- b) consente di calcolare le temperature ed i flussi termici in posizioni diverse da quelle indicate nella norma la suddivisione in nodi;
- c) calcola la somma dei valori assoluti di tutti i flussi termici due volte, per n nodi (o celle) e per 2n nodi (o celle). La differenza tra questi due risultati è sempre minore dell'1%;
- d) itera il calcolo fino a quando la somma di tutti i flussi termici (positivo e negativo) entranti nell'oggetto, divisa per la metà della somma dei valori assoluti di tutti questi flussi termici, è minore di 0,0001.


Il rischio di formazione di muffe è valutato con la UNI EN ISO 13788.

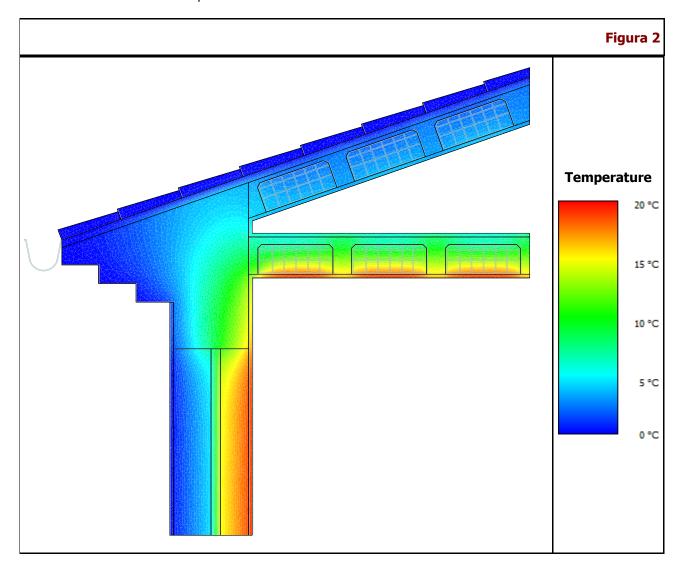
DATI E RISULTATI DI CALCOLO

Dimensioni geometriche

Nella figura seguente è riportato lo schema geometrico del ponte termico nel quale sono rappresentate le dimensioni, la forma e le stratigrafie dei materiali che lo compongono; ogni diverso segmento di confine è contrassegnato da un'etichetta numerata.

Nella tabella a destra sono riportate le dimensioni, espresse in m, di tutti i tratti di confine contrassegnati dalle etichette.

34	0.01
35	0.35
36	0.01
37	0.35
38	0.01
39	0.35
40	0.01


Curve di temperatura

La figura 2 riporta la rappresentazione delle curve di livello del ponte termico calcolato.

Nella tabella sulla destra è riportata la scala cromatica relativa all'intervallo di temperatura definito sul contorno.

Le temperature minime e massime fanno riferimento alle temperature calcolate sulle facce, al confine con l'ambiente interno e quello esterno, tenendo conto anche dello scambio termico convettivo.

Le curve sono definite con un passo di 0.25 °C.

Condizioni al contorno esterne - Dati climatici

Nella tabella seguente sono riportati i dati climatici, in termini di temperature e umidità relative, utilizzati per la valutazione della temperatura e del mese critico per la formazione di muffe sulle superfici interne

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
T[°C]	1.2	3.1	8.3	11.9	18.0	22.1	23.6	22.6	19.1	12.3	6.8	2.6
UR[%]	83.2	80.4	80.6	66.6	65.3	60.4	54.1	72.6	74.6	82.0	93.0	88.2

Condizioni al contorno interne - Calcolo della trasmittanza

Nella tabella seguente sono elencate tutte le zone di confine con le relative temperature e adduttanze. Per poter eseguire il calcolo è necessario definire almeno un ambiente INTERNO e uno ESTERNO: il calcolo della trasmittanza termica lineica è effettuato a partire dell'ambiente INTERNO.

Tabella 2

Zone	btr	Temperatura
		[°C]
ESTERNO	-	0.00
Sottotetto	0.80	4.00
INTERNO (rispetto al quale si calcola il PT)	-	20.00

Condizioni al contorno interne - Valutazione rischio formazione muffe

Nella tabella seguente sono elencate le temperature e umidità relative della zona interna.

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
T[°C	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
UR[%] 65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0

Caratteristiche termiche materiali

Nella tabella seguente è proposto l'elenco di tutti i materiali utilizzati per la struttura del ponte con il relativo valore di conduttività termica.

Tabella 3

Materiale	Conducibilità termica [W/mK]
Blocco forato laterizio da 150	0.3330
Blocco semipieno laterizio da 200	0.4250

Tabella 3

Materiale	Conducibilità termica [W/mK]
Polistirene espanso sinterizzato	0.0400
Intonaco di calce e cemento	0.7000
Calcestruzzo di aggregati naturali	1.0100
Mattoni forati leggeri	0.1300
Tegole in cotto	0.9900
Pannello di fibra di vetro	0.0420
Malta di gesso	0.2900

Caratteristiche terreno

La tabella seguente riporta le caratteristiche del TERRENO, se presente. La valutazione del coefficiente di scambio termico dei pavimenti su terreno è fatta in accordo alla *UNI EN ISO 13370*.

Tabella 4

Descrizione	Simbolo	Valore	Unità di misura
Conduttività termica	k	1.5000	[W/mK]
Dimensione caratteristica	B'	0.00	[m]
Spessore equivalente	dt	0.00	[m]
Trasmittanza equivalente del pavimento	Ug	0.00	[W/m ² K]

Dimensione caratteristica B' = (2 * Area pavimento)/ Perimetro pavimento

Flussi termici

Nella tabella seguente, per ogni confine del ponte termico, viene visualizzato il flusso termico con la zona di confine e l'adduttanza relativa di ogni faccia.

Tabella 5

Facciata	Zona associata	Flusso [W/m]	Adduttanza [W/m²K]
0	ESTERNO	-0.49	25.0
5	Sottotetto	2.83	7.7
6	Sottotetto	-0.44	7.7
7	Sottotetto	-21.67	7.7
11	INTERNO (rispetto al quale si calcola il PT)	24.22	7.7
12	INTERNO (rispetto al quale si calcola il PT)	23.40	7.7
18	ESTERNO	-16.81	25.0
19	ESTERNO	-2.67	25.0
20	ESTERNO	-0.85	25.0
21	ESTERNO	-1.23	25.0
22	ESTERNO	-0.36	25.0
23	ESTERNO	-0.47	25.0
24	ESTERNO	-0.09	25.0
25	ESTERNO	-0.01	25.0
26	ESTERNO	-0.01	25.0
27	ESTERNO	-0.19	25.0
28	ESTERNO	-0.02	25.0
29	ESTERNO	-0.79	25.0
30	ESTERNO	-0.04	25.0
31	ESTERNO	-1.20	25.0
32	ESTERNO	-0.04	25.0
33	ESTERNO	-0.88	25.0
34	ESTERNO	-0.03	25.0
35	ESTERNO	-0.73	25.0
36	ESTERNO	-0.03	25.0
37	ESTERNO	-0.70	25.0
38	ESTERNO	-0.03	25.0
39	ESTERNO	-0.67	25.0
40	ESTERNO	-0.02	25.0

Risultati finali - Calcolo della trasmittanza termica lineica

Nella tabella finale sono riportati i valori di calcolo relativi alla struttura completa.

Il risultato della simulazione numerica è il flusso termico (**F**) che attraversa la struttura, espresso in W/m, dovuto alla differenza di temperatura fra l'ambiente INTERNO e l'ambiente ESTERNO.

Il flusso termico equivalente (**F_spt**), espresso sempre in W/m, relativo alla struttura <u>senza</u> ponte termico, è stato valutato facendo riferimento alla stessa differenza di temperatura fra interno ed esterno e alla lunghezza equivalente (**L**) definita per il confronto.

Dalla differenza fra questi due valori vengono calcolati la trasmittanza termica lineica (\mathbf{k}_{l}) e il coefficiente di accoppiamento (\mathbf{L}_{2D}).

Tabella 6

U	Lungh. associata
[W/m ² K]	[m]
1.80	1.48
0.42	1.38

Tabella 7

Descrizione	Simbolo	Valore	Unità di misura
Trasmittanza termica lineica	kl	-0.85	[W/mK]
Flusso termico totale	F	47.62	[W/m]
Coefficiente di accoppiamento	L2D	2.38	[W/mK]
Lunghezza equivalente	L	2.86	[m]
Flusso termico (senza ponte termico)	F_spt	54.01	[W/m]

Verifica rischio formazione muffe

Nella tabella finale sono riportati i valori mensili per la valutazione del mese critico, del fattore di temperatura critico e della temperatura critica, come previsto dalla **UNI EN ISO 13788**.

Fattore di temperatura critico	f RSi,max	[-]	0.82
Temperatura formazione muffa	T _{min}	[°C]	16.69

Dalla valutazione risulta:

- mese critico: **Gennaio**

- temperatura minima sulla faccia interna: 13.66°C

Il ponte termico è soggetto a rischio di formazione muffe.

•		izioni erne		izioni erne					
	Te	Фе	Ti	Фі	p _{sat} (θ _i)	рi	$p_{sat}(\theta_{si})$	T _{si,min}	f RSi
Gen	1.2	83.2%	20.0	65%	2337	1519	1519	16.69	0.82
Feb	3.1	80.4%	20.0	65%	2337	1519	1519	16.69	0.8
Mar	8.3	80.6%	20.0	65%	2337	1519	1519	16.69	0.72
Apr	11.9	66.6%	20.0	65%	2337	1519	1519	16.69	0.59
Mag	18.0	65.3%	20.0	65%	2337	1519	1519	16.69	-0.66
Giu	22.1	60.4%	20.0	65%	2337	1519	1519	16.69	2.58
Lug	23.6	54.1%	20.0	65%	2337	1519	1519	16.69	1.92
Ago	22.6	72.6%	20.0	65%	2337	1519	1519	16.69	2.27
Set	19.1	74.6%	20.0	65%	2337	1519	1519	16.69	-2.68
Ott	12.3	82%	20.0	65%	2337	1519	1519	16.69	0.57
Nov	6.8	93%	20.0	65%	2337	1519	1519	16.69	0.75
Dic	2.6	88.2%	20.0	65%	2337	1519	1519	16.69	0.81

LEGENDA

Te	Temperatura esterna media mensile	[°C]
Фе	Umidità relativa esterna media mensile	[%]
Ti	Temperatura interna media mensile	[°C]
Φi	Umidità relativa interna media mensile	[%]
$p_{sat}(\theta_i)$	Pressione di saturazione interna	[Pa]
рi	Pressione di vapore interna	[Pa]
$p_{sat}(\theta_{si})$	Pressione di saturazione interna minima accettabile	[Pa]
$T_{si,min}$	Temperatura superficiale minima accettabile	[°C]
f RSi	Fattore di temperatura	[-]

II progettista
(timbro e firma)