SCHEDA CRITERIO B.6.4 - CONTROLLO DELLA RADIAZIONE SOLARE

CONSUMO DI RISORSE	- RISTRU	JTTURAZIONE	B.6.4
Prestazioni dell'involucro			
Controllo della radiazione solare			
AREA DI VALUTAZIONE	CATEGORIA		
B. Consumo di risorse	B.6 Prestazioni dell'involucro		
ESIGENZA	PESO DEL CRITERIO		
Ridurre gli apporti solari nel periodo estivo.	nella categoria	nel sistema c	ompleto
INDICATORE DI PRESTAZIONE	UNITA' DI MISURA		
Trasmittanza solare effettiva media del pacchetto finestra/schermo (gf').	-		
SCALA DI PRESTAZIONE			
			PUNTI
NEGATIVO		> 0,500	-1
SUFFICIENTE		0,500	0
BUONO		0,282	3
OTTIMO		0,137	5

Metodo e strumenti di verifica

1. Calcolare i pesi da attribuire alle esposizioni, compresa quella orizzontale, in funzione dei dati climatici riportati nella UNI 10349-1.

Nota 1: Il peso di ciascuna esposizione viene determinato sulla base dei dati climatici della

UNI 10349-1"Riscaldamento e raffrescamento degli edifici - Dati climatici - Parte 1: Medie mensili per la valutazione della prestazione termo-energetica dell'edificio e metodi per ripartire l'irradianza solare nella frazione diretta e diffusa e per calcolare l'irradianza solare su di una superficie inclinata" Dati climatici". Ai fini del calcolo si considera come stagione di raffrescamento il periodo che comprende i mesi di giugno, luglio, agosto e settembre.

Calcolare, per ogni esposizione compresa quella orizzontale, l'irradiazione solare estiva incidente secondo la formula seguente e secondo l'UNI/TR 11328-1:

$$Irr_{esp,i} = \sum_{giugno}^{settembre} Irr_d + Irr_b$$
 (1)

dove:

 $\begin{array}{ll} \text{Irr}_{\text{d}} & = \text{irradiazione solare diffusa mensile per l'esposizione considerata, } [\text{MJ/m}^2]; \\ \text{Irr}_{\text{b}} & = \text{irradiazione solare diretta mensile per l'esposizione considerata, } [\text{MJ/m}^2]. \\ \end{array}$

© UNI 70

CONSUMO DI RISORSE

RISTRUTTURAZIONE

B.6.4

Prestazioni dell'involucro

Controllo della radiazione solare

Calcolare il peso dell'esposizione considerata secondo la formula seguente:

$$peso_{esp,i} = \frac{Irr_{esp,i}}{\sum Irr_{esp,n}}$$
 (2)

dove:

Irr_{esp.i} = irradiazione solare estiva incidente per l'esposizione considerata, [MJ/m²];

∑Irr_{esp,n} = sommatoria dei valori di irradiazione solare estiva incidente di tutte le esposizioni dell'edificio, [MJ/m²].

Nota 2 L'irradiazione solare incidente di ciascuna esposizione verticale va scelta in relazione all'angolo azimutale (α) che formano gli assi principali dell'edificio con la direzione NORD, misurato in senso orario, secondo la tabella B.6.4.a.

2. Calcolare, per ciascuna esposizione verticale, i fattori di ombreggiamento medi delle finestre (Fov, Ffin, Fhor) della stagione di raffrescamento per le esposizioni verticali come descritto nella serie UNI/TS 11300.

Calcolare, per ciascun mese e finestra dell'edificio, i fattori di ombreggiatura dovuti ad ostruzione esterna ($F_{hor,k}$), aggetto orizzontale ($F_{ov,k}$) e aggetto verticale ($F_{fin,k}$).

Per tutte le tipologie di ombreggiamento esterno dell'edificio (ostruzione esterna, aggetto orizzontale e aggetto verticale) si procede come indicato di seguito.

Verificare la latitudine del luogo di ubicazione dell'edificio e l'esposizione della finestra per poter scegliere la serie di fattori di ombreggiamento di riferimento all'interno della UNI/TS 11300-1 "Determinazione del fabbisogno di energia termica dell'edificio per la climatizzazione estiva ed invernale". A tal fine utilizzare la convenzione in tabella B.6.4.a:

Angolo di azimut	Irradiazione di riferimento
337,5 < α ≤ 22,5	Fov, Ffin, Fhor, N
$22,5 < \alpha \le 67,5$	F _{ov} , F _{fin} , F _{hor} , NE/NO
67,5 < α ≤ 112,5	F _{ov} , F _{fin} , F _{hor} , E/O
$112,5 < \alpha \le 157,5$	Fov, Ffin, Fhor, SE/SO
157,5 < α ≤ 202,5	F_{ov} , F_{fin} , F_{hor} , S
202,5 < α ≤ 257,5	F _{ov} , F _{fin} , F _{hor} , SE/SO
257,5 < α ≤ 292,5	F _{ov} , F _{fin} , F _{hor} , E/O
292,5 < α ≤ 337,5	Fov, Ffin, Fhor, NE/NO

Tabella B.6.4.a – Azimut ed esposizioni di riferimento per i fattori di ombreggiamento su superfici verticali.

Verificare, per ogni finestra considerata, la presenza di ostacoli fissi frontali e/o laterali (alberi, altri edifici, recinzioni, etc.) che determinano una delle condizioni di ombreggiamento (ostruzione/aggetto) indicate in figura 6 o 7 della UNI/TS 11300-1.

Calcolare, secondo le figure 6 o 7 della UNI/TS 11300-1, il relativo angolo di ombreggiamento (α o β), misurandolo dal centro della finestra.

Confrontare, per ciascun mese estivo, il valore α o β calcolato con i valori α o β di riferimento e calcolare il fattore di ombreggiamento effettivo per interpolazione lineare.

© UNI 71

CONSUMO DI RISORSE

RISTRUTTURAZIONE

B.6.4

Prestazioni dell'involucro

Controllo della radiazione solare

Nota 3 Per gli aggetti su elementi trasparenti orizzontali i fattori di ombreggiamento F_{hor} , F_{ov} e F_{fin} si considerano tutti pari a 1. Tuttavia, qualora fossero presenti particolari accorgimenti utili a creare ombreggiamento anche su elementi orizzontali, si possono utilizzare valori diversi, purché adeguatamente documentati.

- 3. Calcolare, per ciascun pacchetto finestra/schermo, il valore di trasmittanza solare totale (gt) secondo la UNI/TS 11300-1:2014.
- 4 Calcolare per ciascun pacchetto finestra/schermo il valore di trasmittanza totale effettiva g_f.

Verificare, per ogni finestra la posizione dell'elemento schermante rispetto all'ambiente considerato: interno allo spazio a temperatura controllata oppure esterno all'ambiente a temperatura controllata.

Calcolare il valore g_f di ciascuna finestra secondo la seguente formula:

$$g_f = F_{sh,ob} \cdot \left[\left(1 - f_{sh,with} \right) \cdot g_{gl} + f_{sh,with} \cdot g_t \right]$$
(3)

dove:

F_{sh,ob} = fattore di riduzione per ombreggiatura Fsh,ob = Fhor · min (Fov, Ffin) – UNI/TS 11300, [-];

F_{hor} = fattore di ombreggiatura relativo ad ostruzioni esterne – UNI/TS 11300, [-]; F_{ov} = fattore di ombreggiatura relativo ad aggetti orizzontali– UNI/TS 11300, [-];

F_{fin} = fattore di ombreggiatura relativo ad aggetti verticali – UNI/TS 11300, [-];

 $f_{sh,with}$ = fattore di utilizzo per schermature mobili, [-]; a_{cil} = fattore di trasmissione solare del vetro, [-];

ggl = fattore di trasmissione solare del vetro, [-];
 gt = trasmittanza solare totale del pacchetto finestra/schermo, [-].

5. Calcolare la trasmittanza solare totale effettiva dell'edificio gf.

Calcolare la trasmittanza solare totale effettiva dell'edificio gf' come media dei valori calcolati per i diversi orientamenti, pesata sulle esposizioni, mediante la seguente formula:

$$gf' = \frac{\sum_{i=1}^{n} gf_{esp,i} \cdot peso_{esp} \cdot At_{esp})}{\sum_{i=1}^{n} peso_{esp} \cdot At_{esp})}$$

dove:

gf_{esp,i} = trasmittanza solare effettiva media delle finestre dell'esposizione i-esima, [-];

peso_{esp} = peso dell'esposizione i-esima, [-];

At_{esp} = superficie trasparente totale dell' esposizione i-esima, [m²];

n = numero di esposizioni, [-]

6. Confrontare il valore calcolato con i benchmark della scala di prestazione e attribuire il punteggio.

Il punteggio da attribuire al criterio si ricava per interpolazione lineare rispetto ai valori della scala di prestazione.

© UNI 72